FDA Singeltary submission 2001
Greetings again Dr. Freas and Committee Members,
I wish to submit the following information to the Scientific Advisors and Consultants Staff 2001 Advisory Committee (short version). I understand the reason of having to shorten my submission, but only hope that you add it to a copy of the long version, for members to take and read at their pleasure, (if cost is problem, bill me, address below). So when they realize some time in the near future of the 'real' risks i speak of from human/animal TSEs and blood/surgical products. I cannot explain the 'real' risk of this in 5 or 10 minutes at some meeting, or on 2 or 3 pages, but will attempt here:
snip...see full text ;
Subject: Prion Scientific Advisors and Consultants Staff Meeting Singeltary Submission Freas Monday, January 08,2001 3:03 PM
PLEASE be aware, my submission here has now been removed from the www, or changed to a different url that no one knows now, and does not come up in search engines anymore, after 17 years...wonder why that could be, i guess the truth just hurt to much$$$
Freas, William
From: Terry S. Singeltary Sr. [flounder@wt.net]
Sent: Monday, January 08,2001 3:03 PM
Subject: CJD/BSE (aka madcow) Human/Animal TSE’s--U.S.--Submission To Scientific Advisors and Consultants Staff January 2001 Meeting (short version)
CJD/BSE (aka madcow) Human/Animal TSE’s--U.S.--Submission To Scientific Advisors and Consultants Staff January 2001 Meeting (short version)
Greetings again Dr. Freas and Committee Members,
I wish to submit the following information to the Scientific Advisors and Consultants Staff 2001 Advisory Committee (short version).
I understand the reason of having to shorten my submission, but only hope that you add it to a copy of the long version, for members to take and read at their pleasure, (if cost is problem, bill me, address below). So when they realize some time in the near future of the 'real' risks i speak of from human/animal TSEs and blood/surgical products. I cannot explain the 'real' risk of this in 5 or 10 minutes at some meeting, or on 2 or 3 pages, but will attempt here:
remember AIDS/HIV, 'no problem to heterosexuals in the U.S.? no need to go into that, you know of this blunder:
DO NOT make these same stupid mistakes again with human/animal TSE's aka MADCOW DISEASE. I lost my Mom to hvCJD, and my neighbor lost his Mother to sCJD as well (both cases confirmed). I have seen many deaths, from many diseases. I have never seen anything as CJD, I still see my Mom laying helpless, jerking tremendously, and screaming "God, what's wrong with me, why can't I stop this". I still see this, and will never forget. Approximately 10 weeks from 1st of symptoms to death. This is what drives me. I have learned more in 3 years about not only human/animal TSE's but the cattle/rendering/feeding industry/government than i ever wished to.
I think you are all aware of CJD vs vCJD, but i don't think you all know the facts of human/animal TSE's as a whole, they are all very very similar, and are all tied to the same thing, GREED and MAN.
I am beginning to think that the endless attempt to track down and ban, potential victims from known BSE Countries from giving blood will be futile. You would have to ban everyone on the Globe eventually? AS well, I think we MUST ACT SWIFTLY to find blood test for TSE's, whether it be blood test, urine test, .eyelid test, anything at whatever cost, we need a test FAST.
DO NOT let the incubation time period of these TSEs fool you.
To think of Scrapie as the prime agent to compare CJD, but yet overlook the Louping-ill vaccine event in 1930's of which 1000's of sheep where infected by scrapie from a vaccine made of scrapie infected sheep brains, would be foolish. I acquired this full text version of the event which was recorded in the Annual Congress of 1946 National Vet. Med. Ass. of Great Britain and Ireland. from the BVA and the URL is posted in my (long version).
U.S.A. should make all human/animal TSE's notifiable at all ages, with requirements for a thorough surveillance and post-mortem examinations free of charge, if you are serious about eradicating this horrible disease in man and animal.
There is histopathology reports describing o florid plaques" in CJD victims in the USA and some of these victims are getting younger. I have copies of such autopsies, there has to be more. PLUS, sub-clinical human TSE's will most definitely be a problem.
THEN think of vaccineCJD in children and the bovine tissues used in the manufacturing process, think of the FACT that this agent surviving 6OO*C. PNAS -- Brown et al. 97 (7): 3418 scrapie agent live at 600*C
Then think of the CONFIDENTIAL documents of what was known of human/animal TSE and vaccines in the mid to late 80s, it was all about depletion of stock, to hell with the kids, BUT yet they knew. To think of the recall and worry of TSE's from the polio vaccine, (one taken orally i think?), but yet neglect to act on the other potential TSE vaccines (inoculations, the most effective mode to transmit TSEs) of which thousands of doses were kept and used, to deplete stockpile, again would be foolish.
--Oral polio; up to 1988, foetal calf serum was used from UK and New Zealand (pooled); since 1988 foetal calf serum only from New Zealand. Large stocks are held.
--Rubella; bulk was made before 1979 from foetal calf serum from UK and New Zealand. None has been made as there are some 15 years stock.
--Diphtheria; UK bovine beef muscle and ox heart is used but since the end of 1988 this has been sourced from Eire. There are 1,250 litres of stock.
--Tetanus; this involves bovine material from the UK mainly Scottish. There are 21,000 litres of stock.
--Pertussis; uses bovine material from the UK. There are 63,000 litres of stock. --They consider that to switch to a non-UK source will take a minimum of 6-18 months and to switch to a non-bovine source will take a minimum of five years.
3. XXXXXXXXXXX have measles, mumps, MMR, rubella vaccines. These are sourced from the USA and the company believes that US material only is used.
89/2.14/2.1
============
BSE3/1 0251
4. XXXXXXXXXXX have a measles vaccine using bovine serum from the UK. there are 440,000 units of stock. They have also got MMR using bovine serum from the UK.
5. XXXXXXXXXXX have influenza, rubella, measles,' MMR vaccines likely to be used in children. Of those they think that only MMR contains bovine material which is probably a French origin.
6. XXXXXXXXXXX have diphtheria/tetanus and potasses on clinical trial. hese use veal material, some of which has come from the UK and has been ade by XXXXXXXXXXX (see above).
I have documents of imports from known BSE Countries, of ferments, whole blood, antiallergenic preparations,
2
human blood plasma, normal human blood sera, human immune blood sera, fetal bovine serum, and other blood fractions not elsewhere specified or included, imported glands, catgut, vaccines for both human/animal, as late as 1998. Let us not forget about PITUITARY EXTRACT. This was used to help COWS super ovulate. This tissue was considered to be of greatest risk of containing BSE and consequently transmitting the disease.
ANNEX 6
MEETING HELD ON 8 JUNE 1988 TO DISCUSS THE IMPLICATIONS OF BSE TO BIOLOGICAL PRODUCTS CONTAINING BOVINE - EXTRACTED MATERIAL
How much of this was used in the U.S.?
Please do not keep making the same mistakes; 'Absence of evidence is not evidence of absence'.
What are the U.S. rules for importing and manufacturing vaccines, medicines and medical devices?
Does the U.S.A. allow sourcing of raw material of ruminants from the U.S.A.?
U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds? . The U.S. rendering system would easily amplify T.S.E.'s:
Have we increased the stability of the system (improved heat treatments) since the EU SSC report on the U.S.A. was published in july 2000?
What is done to avoid cross-contaminations in the U.S.A.?
How can the U.S. control absence of cross-contaminations of animal TSE's when pig and horse MBM and even deer and elk are allowed in ruminant feed, as well as bovine blood? I sadly think of the rendering and feeding policy before the Aug. 4, 1997 'partial' feed ban, where anything went, from the city police horse, to the circus elephant, i will not mention all the scrapie infected sheep. I am surprised that we have not included man 'aka soyent green'. It is a disgusting industry and nothing more than greed fuels it.
When will the U.S.. start real surveillance of the U.S. bovine population (not passive, this will not work)?
When will U.S. start removing SRMs?
Have they stopped the use of pneumatic stunners in the U.S.?
If so, will we stop it in all U.S. abattoirs or only in those abattoirs exporting to Europe?
If not, WHY NOT?
same questions for removal of SRM in the U.S.A., or just for export?
If not, WHY NOT?
How do we now sterilize surgical/dental instruments in the U.S.A.?
Where have we been sourcing surgical catgut?
(i have copies of imports to U.S., and it would floor you) hen will re-usable surgical instruments be banned?
'Unregulated "foods" such as 'nutritional supplements' containing various extracts from ruminants, whether imported or derived from
3
US cattle/sheep/cervids ("antler velvet" extracts!) should be forbidden or at least very seriously regulated. (neighbors Mom, whom also died from CJD, had been taking bovine based supplement, which contained brain, eye, and many other bovine/ovine tissues for years, 'IPLEX').
What is the use of banning blood or tissue donors from Germany, France, etc... when the U.S.A. continues exposing cattle, sheep and people to SRM, refuses to have a serious feed ban, refuses to do systematic BSE-surveillance?
The FDA should feel responsible for the safety of what people eat, prohibit the most dangerous foods, not only prohibit a few more donors - the FDA should be responsible for the safe sourcing of medical devices, not only rely on banning donors "from Europe", The 'real' risks are here in the U.S. as well, and nave been for some time.
We must not forget the studies that have proven infectivity in blood from TSE's.
The Lancet, November 9, 1985
Sir, --Professor Manuelidis and his colleagues (Oct 19, p896) report transmission to animals of Creutzfeldt-Jakob disease (CJD) from the buffy coat from two patients. We also transmitted the disease from, whole blood samples of a patient (and of mice) infected with CJD.l Brain, Cornea, and urine from this patient were also infectious, and the clinicopathological findings2 are summarised as follows.
snip...
Samples,were taken aseptically at necropsy. 10% crude homogenates of brain and cornea in saline, whole blood (after crushing a clot), and untreated CSF and urine were innoculated intracerebrally into CFl strain mice (20 ul per animal). Some mice showed emaciation, bradykinesia, rigidity of the body and tail, and sometimes tremor after long incubation periods. Tissues obtained after the animal died (or was killed) were studied histologically (table). Animals infected by various inocula showed common pathological changes, consisting of severe spongiform changes, glial proliferation, and a moderate loss of nerve cells. A few mice inoculated with brain tissue or urine had the same amyloid plaques found in patients and animals with CJD.3
snip...
Department of Neuropathology,. Neurological Institute, Faculty of Medicine, Kyushu University, Fukuoka812, Japan JUN TATEISHI
(full text-long version)
and
CWD and transmission to man will be no different than other TSE's.
"Clearly, it is premature to draw firm conclusions about CWD passing naturally into humans, cattle and sheep, but the present results suggest that CWD transmissions to humans would be as limited by PrP incompatibility as transmissions of BSE or sheep scrapie to humans. Although there is no evidence that sheep scrapie has affected humans, it is likely that BSE has
4
caused variant CJD in 74 people (definite and probable variant CJD cases to date according to the UK CJD Surveillance Unit). Given the presumably large number of people exposed to BSE infectivity, the susceptibility of humans may still be very low compared with cattle, which would be consistent with the relatively inefficient conversion of human PrP-sen by PrPBSE. Nonetheless, since humans have apparently been infected by BSE, it would seem prudent to take reasonable measures to limit exposure of humans (as well as sheep and cattle) to CWD infectivity as has been recommended for other animal TSEs,"
G.J. Raymond1, A. Bossers2, L.D. Raymond1, K.I. O'Rourke3, L.E. McHolland4, P.K. Bryant III4, M.W. Miller5, E.S. Williams6, M. Smits2 and B. Caughey1,7
or more recently transmission of BSE to sheep via whole blood Research letters Volume 356, Number 9234 16 September 2000
Transmission of BSE by blood transfusion in sheep
Lancet 2000; 356: 999 – 1000
F Houston, J D Foster, Angela Chong, N Hunter, C J Bostock
See Commentary
"We have shown that it is possible to transmit bovine spongiform encephalopathy (BSE) to a sheep by transfusion with whole blood taken from another sheep during the symptom-free phase of an experimental BSE infection. BSE and variant Creutzfeldt-Jakob disease (vCJD) in human beings are caused by the same infectious agent, and the sheep-BSE experimental model has a similar pathogenesis to that of human vCJD. Although UK blood transfusions are leucodepleted--a possible protective measure against any risk from blood transmission-- this report suggests that blood donated by symptom-free vCJD-infected human beings may represent a risk of spread of vCJD infection among the human population of the UK."
"The demonstration that the new variant of Creutzfeldt-Jakob disease (vCJD) is caused by the same agent that causes bovine spongiform encephalopathy (BSE) in cattle1 has raised concerns that blood from human beings in the symptom-free stages of vCJD could transmit infection to recipients of blood transfusions (full text long version)"
and...
"The large number of cases (1040), temporal clustering of the outbreaks (15 in the first 6 months of 1997), the high in-flock incidence, and the exceptional involvement of goats (390 cases), suggested an accidental infection. The source of the epidemic might have been TSE-contaminated meat and bonemeal, but eight flocks had never been fed any commercial feedstuff. Infection might have risen from the use of a formol-inactivated vaccine against contagious agalactia prepared by a single laboratory with brain and mammary gland homogenates of sheep infected with Mycoplasma agalactiae. Although clinical signs of TSE in the donor sheep have not been found, it is possible that one or more of them were harbouring the
5
infectious agent. Between 1995 and 1996, this vaccine was given subcutaneously to 15 of the affected flocks (to one flock in 1994) ; in these animals the disease appeared between 23 and 35 months after vaccination. No information is available for herd 13 because it was made up of stolen animals. Sheep from the remaining three flocks (1-3, figure) did not receive the vaccine, thus suggesting a naturally occurring disease.’’ (again, full text long version).
IN SHORT, please do under estimate this data and or human/animal TSE's including CWD in the U.S.A.
A few last words, please.
The cattle industry would love to have us turn our focus to CWD and forget about our own home grown TSE in Bovines. This would be easy to do. Marsh's work was from downer cattle feed, NOT downer deer/elk feed. This has been proven.
DO NOT MAKE THAT MISTAKE.
There should be NO LESS THAN 1,000,000 tests for BSE/TSE ' in 2001 for U.S.A. French are testing 20,000 a week. The tests are available. Why wait until we stumble across a case from passive surveillance, by then it is to late. IF we want the truth, this is a must???
United States Total ,Bovine Brain Submissions by State,
May 10 ,1990 thru October 31, 2000
Total 11,700
FROM 1.5 BILLION HEAD OF CATTLE since 1990 ???
with same feeding and rendering practices as that of U.K. for years and years, same scrapie infected sheep used in feed, for years and years, 950 scrapie infect FLOCKS in the U.S. and over 20 different strains of scrapie known to date. (hmmm, i am thinking why there is not a variant scrapie, that is totally different than all the rest)? just being sarcastic.
with only PARTIAL FEED BAN implemented on Aug. 4, 1997??? (you really need to reconsider that blood meal etc. 'TOTAL BAN')
AND PLEASE FOR GODS SAKE, STOP saying vCJD victims are the only ones tied to this environmental death sentence. "PROVE IT". It's just not true. The 'CHOSEN ONES' are not the only ones dying because of this man-made death sentence. When making regulations for human health from human/animal TSEs, you had better include ALL human TSE's, not just vCJD. Do NOT underestimate sporadic CJD with the 'prehistoric' testing available to date. This could be a deadly mistake. Remember, sCJD kills much faster from 1st onset of symptoms to death, and hvCJD is the fastest. Could it just be a higher titre of infectivity, or route or source, or all three?
Last, but not least. The illegal/legal harvesting of body parts and tissues will come back to haunt you. Maybe not morally, but due to NO background checks and human TSEs, again it will continue to spread.
Stupidity, Ignorance and Greed is what fuels this disease. You must stop all of this, and ACT AT ONCE...
Sent: Monday, January 08,2001 3:03 PM
FDA CJD BSE TSE Prion Scientific Advisors and Consultants Staff January 2001 Meeting Singeltary Submission
2001 FDA CJD TSE Prion Singeltary Submission
see search results for the original link;
another search here;
i wonder if the Government FDA et al, or whom ever removed my submission to fda from 2001 from the www after 17 years, where most every thing i said has come true, i wonder if the government wonders by removing my submission they will change the science and the truth?
reasons for Government FDA removal of Singeltary Submission materials to federal dockets;
see updated link;
-----Original Message-----
From: Terry S. Singeltary Sr. [mailto:flounder@wt.net]
Sent: Tuesday, February 18, 2003 12:45 PM
To: Freas, William Cc: Langford, Sheila
Subject: Re: re-vCJD/blood and meeting of Feb. 20, 2003
Greetings FDA, Variant Creutzfeldt-Jakob Disease Guidance Topic of Feb. 20 TSE Cmte. [Committee Meeting on February 20, 2003] FDA’s Transmissible Spongiform Encephalopathies Advisory Committee will meet Feb. 20 to hear updates on the implementation of the agency’s variant Creutzfeldt-Jakob Disease guidance and its effect on blood supply.
FULL SUBMISSION ;
Docket Management Docket: 02D-0073 - Guidance: Validation of Procedures for Processing of Human Tissues Intended for Transplantation Comment Number: EC -4 Accepted - Volume 1 2003-01-16 16:33:04
Docket: 02D-0073 - Guidance: Validation of Procedures for Processing of Human Tissues Intended for Transplantation
Greetings,
please be advised;
with the new findings from Collinge et al; that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype which is indistinguishable from type 2 PrPSc, the commonest sporadic CJD, i only ponder how many of the sporadic CJDs in the USA are tied to this alternate phenotype? these new findings are very serious, and should have a major impact on the way sporadic CJDs are now treated as opposed to the vCJD that was thought to be the only TSE tied to ingesting beef, in the medical/surgical arena. these new findings should have a major impact on the way sporadic CJD is ignored, and should now be moved to the forefront of research as with vCJD/nvCJD.
SNIP...FULL TEXT ;
Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)
Singeltary submission ;
FSIS, USDA, REPLY TO SINGELTARY
Animal and Plant Health Inspection Service (APHIS) Proposed Rule: Bovine Spongiform Encephalopathy; Minimal-Risk Regions; Importation of Live Bovines and Products Derived From Bovines
THURSDAY, FEBRUARY 25, 2016
U.S. Food & Drug Administration (FDA) FDA/CFSAN Cosmetics Update: Cosmetics Program; Import and Domestic and Transmissible Spongiform Encephalopathy TSE Prion Disease Risk Factors
***WARNING TO ALL CONSUMERS AND COUNTRIES AROUND THE WORLD***
***Note: FDA labs do not conduct BSE analysis and thus no sampling guidance is issued for BSE. ***
FDA MAY STRENGTHEN BSE FEED REGULATIONS
T U E S D A Y , A P R I L 1 9 , 2 0 1 6
Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards
Singeltary Comment Submission Docket No. FDA-2013-N-07 64 for “Animal Feed Regulatory Program Standards.”
Singeltary Comment,
Greetings FDA et al,
I would kindly like to comment on ;
Docket No. FDA-2013-N-07 64 for “Animal Feed Regulatory Program Standards.”
I implore that we close the mad cow feed loopholes with cervid, and we must enforce existing feed regulations against the BSETSEPrion. we have failed terribly in this.
snip...see full text;
SATURDAY, MARCH 16, 2019
Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff Document issued on March 15, 2019
2019 UPDATE TSE PRION USA
USDA APHIS CDC FDA BSE CWD TSE PRION UPDATE 2019
THURSDAY, MARCH 14, 2019
USDA APHIS CDC FDA BSE TSE PRION UPDATE 2019
THURSDAY, MARCH 14, 2019
USDA APHIS CDC Cervids: Chronic Wasting Disease Specifics Updated 2019
FRIDAY, MARCH 15, 2019
Saskatchewan Chronic Wasting Disease TSE Prion 349 Cases Positive for 2018
SATURDAY, MARCH 16, 2019
Chronic Wasting Disease CWD TSE Prion United States of America Update March 16, 2019
FRIDAY, MARCH 15, 2019
USDA APHIS SCRAPIE TSE PRION Sheep and Goat Health Update 2019
MONDAY, FEBRUARY 25, 2019
MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019
BSE INQUIRY EVIDENCE
Why did the appearance of new TSEs in animals matter so much? It has always been known that TSEs will transfer across species boundaries. The reason for this was never known until the genetic nature of the prion gene was fully investigated and found to be involved. The gene is found to have well preserved sites and as such there is a similar gene throughout the animal kingdom...and indeed a similar gene is found in insects! It is NOT clear that the precise close nature of the PrP gene structure is essention for low species barriers. Indeed it is probably easier to infect cats with BSE than it is to infect sheep. As such it is not clear that simply because it is possible to infect BSE from cattle into certain monkeys then other apes will necessarily be infectable with the disease. One factor has stood out, however, and that is that BSE, when inoculated into mice would retain its apparent nature of disease strain, and hence when it was inoculated back into cattle, then the same disease was produced. Similarly if the TSE from kudu was inoculated into mice then a similar distribution of disease in the brain of the mouse is seen as if BSE had been inoculated into the mouse. This phenomenon was not true with scrapie, in which the transmission across a species barrier was known to lose many of the scrapie strain phenomena in terms of incubation period or disease histopathology. This also suggested that BSE was not derived from scrapie originally but we probably will never know.
------------------------------------------------------------------------
TSE in wild UK deer? The first case of BSE (as we now realise) was in a nyala in London zoo and the further zoo cases in ungulates were simply thought of as being interesting transmissions of scrapie initially. The big problem started to appear with animals in 1993-5 when it became clear that there was an increase in the CJD cases in people that had eaten deer although the statistics involved must have been questionable. The reason for this was that the CJD Surveillance was well funded to look into the diet of people dying of CJD. This effect is not clear with vCJD...if only because the numbers involved are much smaller and hence it is difficult to gain enough statistics. They found that many other foods did not appear to have much association at all but that deer certainly did and as years went by the association actually became clearer. The appearance of vCJD in 1996 made all this much more difficult in that it was suddenly clearer that the cases of sporadic CJD that they had been checking up until then probably had nothing to do with beef...and the study decreased. During the period there was an increasing worry that deer were involved with CJD..
see references:
DEER BRAIN SURVEY
Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY
Date: Fri, 18 Oct 2002 23:12:22 +0100
From: Steve Dealler
Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member
To: BSE-L@ References: <3daf5023 .4080804="" a="" class="yiv9883380120linkified" href="http://wt.net/" rel="noopener noreferrer" style="color: blue; cursor: pointer;" target="_blank">WT.NET3daf5023>
Dear Terry,
An excellent piece of review as this literature is desparately difficult to get back from Government sites.
What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!
Steve Dealler ===============
BSE Inquiry Steve Dealler
Management In Confidence
BSE: Private Submission of Bovine Brain Dealler
reports of sheep and calf carcasses dumped...
re-scrapie to cattle GAH Wells BSE Inquiry
https://web.archive.org/web/20090506043931/http://www.bseinquiry.gov.uk/files/yb/1993/12/09001001.pdf
Dr. Dealler goes rogue to confirm BSE
Confirmation BSE Dealler's mad cow
BSE vertical transmission
1993 cjd report finds relationship with eat venison and cjd increases 9 fold, let the cover up begin...tss
FINDINGS
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02)..
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
GAME FARM INDUSTRY WANTS TO COVER UP FINDINGS OF INCREASE RISK TO CJD FROM CERVID
BSE INQUIRY
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane
BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.
The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
MONDAY, FEBRUARY 25, 2019
MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
here is the latest;
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
https://prion2018.org/
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip...
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
https://prion2018.org/wp-content/uploads/2018/05/program.pdf
https://prion2018.org/
THURSDAY, OCTOBER 04, 2018
Cervid to human prion transmission 5R01NS088604-04 Update
http://grantome.com/grant/NIH/R01-NS088604-04
http://chronic-wasting-disease.blogspot.com/2018/10/cervid-to-human-prion-transmission.html
snip...full text;
SATURDAY, FEBRUARY 09, 2019
Experts: Yes, chronic wasting disease in deer is a public health issue — for people
***> This is very likely to have parallels with control efforts for CWD in cervids.
Rapid recontamination of a farm building occurs after attempted prion removal
Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2
Abstract
The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity.
Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids.
Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent.
Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA).
A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay.
Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3.
The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.
snip...
As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.
This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.
Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.
Funding This study was funded by DEFRA within project SE1865.
Competing interests None declared.
Saturday, January 5, 2019
Rapid recontamination of a farm building occurs after attempted prion removal
THURSDAY, FEBRUARY 28, 2019
BSE infectivity survives burial for five years with only limited spread
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
you can see more evidence here ;
Wednesday, May 24, 2017
PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1
WEDNESDAY, SEPTEMBER 08, 2010
CWD PRION CONGRESS SEPTEMBER 8-11 2010
PRION 2010
International Prion Congress: From agent to disease September 8–11, 2010 Salzburg, Austria
Transmission Studies
Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS
resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.
snip....
Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿
Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations
In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease
Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.
see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
SEE; Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Monday, May 23, 2011
CDC Assesses Potential Human Exposure to Prion Diseases Travel Warning
Public release date: 23-May-2011
Contact: Francesca Costanzo adajmedia@elsevier.com 215-239-3249 Elsevier Health Sciences
CDC assesses potential human exposure to prion diseases Study results reported in the Journal of the American Dietetic Association
Philadelphia, PA, May 23, 2011 – Researchers from the Centers for Disease Control and Prevention (CDC) have examined the potential for human exposure to prion diseases, looking at hunting, venison consumption, and travel to areas in which prion diseases have been reported in animals. Three prion diseases in particular – bovine spongiform encephalopathy (BSE or “Mad Cow Disease”), variant Creutzfeldt-Jakob disease (vCJD), and chronic wasting disease (CWD) – were specified in the investigation. The results of this investigation are published in the June issue of the Journal of the American Dietetic Association.
“While prion diseases are rare, they are generally fatal for anyone who becomes infected. More than anything else, the results of this study support the need for continued surveillance of prion diseases,” commented lead investigator Joseph Y. Abrams, MPH, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta.”But it’s also important that people know the facts about these diseases, especially since this study shows that a good number of people have participated in activities that may expose them to infection-causing agents.”
Although rare, human prion diseases such as CJD may be related to BSE. Prion (proteinaceous infectious particles) diseases are a group of rare brain diseases that affect humans and animals. When a person gets a prion disease, brain function is impaired. This causes memory and personality changes, dementia, and problems with movement. All of these worsen over time. These diseases are invariably fatal. Since these diseases may take years to manifest, knowing the extent of human exposure to possible prion diseases could become important in the event of an outbreak.
CDC investigators evaluated the results of the 2006-2007 population survey conducted by the Foodborne Diseases Active Surveillance Network (FoodNet). This survey collects information on food consumption practices, health outcomes, and demographic characteristics of residents of the participating Emerging Infections Program sites. The survey was conducted in Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, as well as five counties in the San Francisco Bay area, seven counties in the Greater Denver area, and 34 counties in western and northeastern New York.
Survey participants were asked about behaviors that could be associated with exposure to the agents causing BSE and CWD, including travel to the nine countries considered to be BSE-endemic (United Kingdom, Republic of Ireland, France, Portugal, Switzerland, Italy, the Netherlands, Germany, Spain) and the cumulative length of stay in each of those countries. Respondents were asked if they ever had hunted for deer or elk, and if that hunting had taken place in areas considered to be CWD-endemic (northeastern Colorado, southeastern Wyoming or southwestern Nebraska). They were also asked if they had ever consumed venison, the frequency of consumption, and whether the meat came from the wild.
The proportion of survey respondents who reported travel to at least one of the nine BSE endemic countries since 1980 was 29.5%. Travel to the United Kingdom was reported by 19.4% of respondents, higher than to any other BSE-endemic country. Among those who traveled, the median duration of travel to the United Kingdom (14 days) was longer than that of any other BSE-endemic country.. Travelers to the UK were more likely to have spent at least 30 days in the country (24.9%) compared to travelers to any other BSE endemic country. The prevalence and extent of travel to the UK indicate that health concerns in the UK may also become issues for US residents.
The proportion of survey respondents reporting having hunted for deer or elk was 18.5% and 1.2% reported having hunted for deer or elk in CWD-endemic areas. Venison consumption was reported by 67.4% of FoodNet respondents, and 88.6% of those reporting venison consumption had obtained all of their meat from the wild. These findings reinforce the importance of CWD surveillance and control programs for wild deer and elk to reduce human exposure to the CWD agent. Hunters in CWD-endemic areas are advised to take simple precautions such as: avoiding consuming meat from sickly deer or elk, avoiding consuming brain or spinal cord tissues, minimizing the handling of brain and spinal cord tissues, and wearing gloves when field-dressing carcasses.
According to Abrams, “The 2006-2007 FoodNet population survey provides useful information should foodborne prion infection become an increasing public health concern in the future. The data presented describe the prevalence of important behaviors and their associations with demographic characteristics. Surveillance of BSE, CWD, and human prion diseases are critical aspects of addressing the burden of these diseases in animal populations and how that may relate to human health.”
###
The article is “Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet population survey” by Joseph Y. Abrams, MPH; Ryan A. Maddox, MPH; Alexis R Harvey, MPH; Lawrence B. Schonberger, MD; and Ermias D. Belay, MD. It appears in the Journal of the American Dietetic Association, Volume 111, Issue 6 (June 2011) published by Elsevier.
In an accompanying podcast CDC’s Joseph Y. Abrams discusses travel, hunting, and eating venison in relation to prion diseases. It is available at http://adajournal.org/content/podcast. ;
Thursday, May 26, 2011
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Joseph Y. Abrams, MPH, Ryan A. Maddox, MPH , Alexis R. Harvey, MPH , Lawrence B. Schonberger, MD , Ermias D. Belay, MD
Accepted 15 November 2010. Abstract Full Text PDF References .
Abstract
The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD–endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission.
PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;
Thursday, May 26, 2011
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
NOR IS THE FDA recalling this CWD positive elk meat for the well being of the dead elk ;
Wednesday, March 18, 2009
Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II
Transmissible Spongiform Encephalopathies
Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY
TUESDAY, MARCH 26, 2019
USDA ARS 2018 USAHA RESOLUTIONS TWO PRONGED APPROACH NEEDED FOR ADVANCING CATTLE TRACEABILITY
SATURDAY, MARCH 2, 2019
MAD COW TSE PRION DISEASE AND THE PEER REVIEW PROCESS OF BSe Science $$$
TUESDAY, MARCH 26, 2019
Joint Statement from President Donald J. Trump USA and President Jair Bolsonaro Brazil FOREIGN POLICY BSE TSE Prion aka mad cow disease
SUNDAY, OCTOBER 21, 2018
Surveillance for variant CJD: should more children with neurodegenerative diseases have autopsies? Singeltary Review
WEDNESDAY, OCTOBER 17, 2018
PRICE OF TSE PRION POKER GOES UP spectrum of human prion diseases may extend the current field and may notably include spinal cord diseases
Subject: PRION 2017 CONFERENCE
DECIPHERING NEURODEGENERATIVE DISORDERS
VIDEO PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. <***
ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION
10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question...
''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ;
also, see;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers.. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
snip...
The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure.
***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
REVIEW
***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***
***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<***
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<***
***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
Thursday, March 8, 2018
Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein
MONDAY, NOVEMBER 26, 2018
Sporadic Creutzfeldt-Jakob Disease in a Woman Married Into a Gerstmann-Sträussler-Scheinker Family: An Investigation of Prions Transmission via Microchimerism
FRIDAY, OCTOBER 05, 2018
More Politicians and Very Young People Struck Down With Creutzfeldt Jakob Disease CJD mad cow type TSE Prion USA
TUESDAY, MARCH 12, 2019
Early preclinical detection of prions in the skin of prion-infected animals
SUNDAY, MAY 18, 2008
BSE, CJD, and Baby foods (the great debate 1999 to 2005)
Sunday, September 16, 2018
Mother to Offspring Transmission of TSE PRION DISEASE and risk factors there from
WEDNESDAY, MARCH 13, 2019
CWD, TSE, PRION, MATERNAL mother to offspring, testes, epididymis, seminal fluid, and blood
MONDAY, FEBRUARY 25, 2019
MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019
Pediatric CJD
***> ZOONOSIS OF SCRAPIE TSE PRION
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
***> why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man.
***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough.
***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***
Transmission of scrapie prions to primate after an extended silent incubation period
Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
SNIP...
Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.
The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.
We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.
Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.
The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.
Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.
Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.
Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.
Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.
In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
NSLP DEADSTOCK DOWNER COW SCHOOL LUNCH PROGRAM
seems USDA NSLP et al thought that it would be alright, to feed our children all across the USA, via the NSLP, DEAD STOCK DOWNER COWS, the most high risk cattle for mad cow type disease, and other dangerous pathogens, and they did this for 4 years, that was documented, then hid what they did by having a recall, one of the largest recalls ever, and they made this recall and masked the reason for the recall due to animal abuse (I do not condone animal abuse), not for the reason of the potential for these animals to have mad cow BSE type disease (or other dangerous and deadly pathogens). these TSE prion disease can lay dormant for 5, 10, 20 years, or longer, WHO WILL WATCH OUR CHILDREN FOR THE NEXT 5 DECADES FOR CJD ???
Saturday, September 21, 2013
Westland/Hallmark: 2008 Beef Recall A Case Study by The Food Industry Center January 2010 THE FLIM-FLAM REPORT
DID YOUR CHILD CONSUME SOME OF THESE DEAD STOCK DOWNER COWS, THE MOST HIGH RISK FOR MAD COW DISEASE ??? this recall was not for the welfare of the animals. ...tss you can check and see here ; (link now dead, does not work...tss)
SEEMS usda et al took the link down to the schools that received this mad cow suspect food for our children via NSLP, try this link ;
FRIDAY, MARCH 28, 2008
USDA CERTIFIED DEAD STOCK DOWNER COW PROGRAM LIST OF SCHOOLS AFFECTED STATE BY STATE RECALL USDA CERTIFIED DEAD STOCK DOWNER COW SCHOOL LUNCH PROGRAM LIST OF SCHOOLS AFFECTED STATE BY STATE (dead stock downers i.e. non-ambulatory, the most high risk for mad cow disease)
March 28, 2008, 12:10AM FDA lists school districts that got recalled meat Lawmakers had demanded info be released
LOS ANGELES — The U.S. Department of Agriculture released a list Thursday of all school districts nationwide — including scores of Houston-area districts — that received beef included in last month's recall of 143 million pounds from a California slaughterhouse.
The 226-page document listed "school food authorities" — the rough equivalent of school districts — that received the meat. It was released after pressure from federal lawmakers, including Rep. Rosa DeLauro, D-Conn.
DeLauro called the list a victory for children's health but said the USDA should also release a list of retail stores that received the recalled beef.
A USDA spokeswoman did not immediately return an e-mail requesting comment.
The agency issued the largest beef recall in U.S. history last month after the Humane Society of the United States released undercover video showing workers at Chino-based Hallmark/Westland Meat Co. forcing sick cows to stand with forklifts, electric prods and high-pressure water hoses.
The slaughterhouse was a major supplier of ground beef to the National School Lunch Program.
The memo also noted that the inclusion of a school food authority in the list didn't necessarily mean that all schools within that district had received the beef.
IS YOUR DISTRICT ON THIS LIST?
Houston-area school districts that received beef from the California slaughterhouse:
snip...see full text;
THURSDAY, MARCH 14, 2019
USDA APHIS CDC FDA BSE TSE PRION UPDATE 2019
SUNDAY, MARCH 10, 2019
National Prion Disease Pathology Surveillance Center Cases Examined¹ Updated Feb 1, 2019 Variably protease-sensitive prionopathy VPSPr
Terry S. Singeltary Sr.
No comments:
Post a Comment